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Flowsquare is a two-dimensional Computational Fluid Dynamics (CFD) software for unsteady, non-

reactive, reactive and subsonic/supersonic flows. The aim of this software is to provide a handy CFD 

environment so that more people can get to know what CFD is like and simulate flows for their 

educational and/or academic interests. This documentation includes theoretical and numerical 

aspects of the software, which are basis of the parameters in grid.txt. Although flow simulations can 

be carried out without understanding them, the users are recommended to read this documentation.

1. Non-reactive flows 

First, numerical method for non-reactive flow 

simulation is explained. 

1.1. Governing equations 

In Flowsquare, the incompressible governing 

equations are solved. They consist of the 

continuity equation (mass conservation, and 

also Einstein notation is used): 
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and the equation for momentum: 
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where iu  is the velocity component in i-

direction (m/s),   is the mixture density 

(kg/m3), p is the pressure (Pa), ig  is the 

external force in i-direction due to buoyancy 

(m/s2). The viscous term ij is written as: 
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where  is the dynamic viscosity (kg/(m s)) 

and ij  is the Kronecker delta. Note that the 

equation is solved assuming a constant 

density, although Eqs. (1) and (2) are written 

in conservative form. Equation (2) is solved 

(integrated in time) in two steps. In the first 

step, the equation is solved for  *ju  

without the pressure term as: 
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In the second step (time integration), the 

pressure term is included so that the mass 

conservation is taken into account in the 

second time integration: 
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By calculating divergence of Eq. (5), the 

Poisson’s equation for the correction pressure
*p  is as: 
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where t  is the time step and d , a user 

defined parameter, is typically unity. Once the 

corrected pressure field in obtained by solving 

Eq. (6), the corrected velocity in the next time 

step is computed from Eq. (5) as: 
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The corrected velocity field satisfying the 

continuity equation (Eq. 1) is obtained. Note 

that in this numerical method, the continuity 

equation is not explicitly solved. 

2. Reactive flows 

In the simulation of reactive flows, Eqs. (1)—

(7) are solved to obtain a velocity field. This 

means the flow field is solved based on the 

low-Mach number assumption (the flow has 

to be “slow” compared to the speed of sound). 

Also, changes of species and internal energy 

per unit mass need to be considered by 

solving the transport equations, due to the 

chemical reactions and heat release. The 

transport equations for mass fraction species i, 

iY  and temperature T  maybe written under 

appropriate assumptions as: 
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where the energy conservation is written in 

terms of temperature. The molecular 

diffusivity of species i, thermal conductivity 

and specific heat capacity at constant 

pressure are respectively denoted by iD ,   

and pc . Species and heat production rate per 

unit volume are denoted by i  and T . For 

the simplest reaction system, where the fuel 

F  and oxidiser O  react to produce products 

P  as: 

,POF      (10) 

the total number of equations for Eqs. (8) and 

(9) is four. 

In Flowsquare, in order to reduce the number 

of equations to be solved, a progress variable 

and a mixture fraction are introduced. The 

progress variable is used for reactive flows 

with premixed mixtures, while the mixture 

fraction is used for reactive systems with non-

premixed mixtures. These two modes of 

reactions and the reduced governing equation 

are explained in the next subsections. 

2.1 Premixed reacting flows 

A chemical reaction is called premixed 

reaction when a fuel and oxidiser are fully 

mixed before the reaction take place. For 

example, premixed reaction (combustion) can 

be observed in traditional gas stove and 

heater burners. 

One of the important features of this reaction 

mode is that a reaction front (a flame in 

combustion) can freely propagate toward 

unburnt mixture (see Fig. 1a), or mixture can 

ignite at any locations if there is enough 

activation energy. This is not the case in non-

premixed systems as explained in the next 

subsection. 

For premixed mixture, reaction can be 

expressed by using reaction progress variables. 

A progress variable, often denoted by c , is a 

normalised scalar which shows the extent of 

reaction progress in premixed reactive 

systems. Although there are several 

definitions for progress variables, following 

definitions are frequently used: 
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where the subscripts, u  and b  denote 

unburnt and burnt mixtures, and F , O  and 
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P  denote fuel, oxidiser and product, 

respectively. As clearly seen from Eq. (11), a 

progress variable is 0 in the unburnt mixture 

and 1 in the fully burnt mixture. Figure 1b 

shows a typical progress variable variation for 

one-dimensional premixed flame. Flame front 

(reaction front) is often defined using a iso-

contour of 6.0~3.0c . 

Lewis number Le  is defined as the ratio of 

thermal diffusivity to mass diffusivity. If unity 

Lewis number, constant pressure, adiabatic 

conditions and TYY cccc
POF


/
 are 

assumed, Eqs (8) and (9) are reduced to one 

transport equation of progress variable as: 
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where c  is the reaction rate of c , and D  is 

the diffusivity of the progress variable (under 

the above assumptions, it can be either 

thermal diffusivity or mass diffusivity of 

species). Therefore, once a progress variable 

field is given, temperature and species mass 

fraction field can be obtained using Eq. (11). 

The reaction rate c  is modelled in the 

software as follows: 

c
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where k , aT  and n  are mixture specific and 

constant for the single step reaction explained 

in Eq. (10). In Eq. (13), c  is the mixture 

fraction between a fuel-oxidiser mixture and 

air (inert gas). Although the mixture fraction is 

explained in the next subsection, this may be 

used to represent surrounding air in premixed 

combustion. In 1c  regions, the local 

mixture consists of only the fuel-oxidiser 

mixture, while only the air exists in 0c . By 

multiplying c  to the reaction rate as in Eq. 

(13), partially premixed reaction such as 

 

Figure 1: Schematic illustrations of (a) a premixed 

flame and (b) one-dimensional variation of 

progress variable. 

 

 

Figure 2: Schematic illustrations of (a) a non-

premixed flame, (b) one-dimensional variations of 

mixture fraction, and (c) temperature and mass 

fraction variations in a mixture fraction space. 

 

premixed combustion in surrounding air 

(pure-air stream) can be considered. When no 

pure-air stream is set in the computational 

domain, c  is automatically set as unity. The 

scalar transport equation, Eq. (12) may be 

solved for non-reactive cases without source 
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term c  when local scalar boundary 

condition is used (see Sec. 4.5.4). 

2.2 Non-premixed reacting flows 

In contrast to premixed reacting flows, non-

premixed reactive systems do not require 

premixing of fuel and oxidiser before 

reactions. A schematic illustration of a typical 

non-premixed flame is shown in Fig. 2a. There 

are fuel and oxidiser streams and reaction 

takes place only at the location where the fuel 

and oxidiser meet. 

Using the given chemical reaction model in Eq. 

(10), the mass production rate of fuel, oxidiser, 

product and heat release are related as: 
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where Q  is the heating value of fuel and s  is 

the mass of oxidiser required per unit mass of 

fuel, defined as FO WWs / . Here, iW  is the 

molar mass of species i. Under the unity Lewis 

number assumption, the conserved scalar   

is defined from any pair of variables as: 
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  is called conserved scalar because no 

source term appears in the transport 

equations of these conserved scalars (such 

transport equation can be obtained from Eqs. 

8 and 9); for above OF , , the transport 

equations of FsY  and OY  are written as: 
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By combining Eqs. (20) and (21) using the 

relation in Eq. (14), it is clear that the source 

terms are cancelled out and following is 

obtained: 
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Once a conserved scalar is defined, a 

normalised conserved scalar   is obtained. 

This normalised conserved scalar is generally 

called mixture fraction, and written as: 
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where the subscripts FU  and OX  denote 

fuel and oxidiser streams, respectively. Figure 

2b shows a one-dimensional mixture fraction 

variation for a non-premixed flame shown in 

Fig. 2a. With the above definition of mixture 

fraction, 1 corresponds to the fuel stream 

and 0  corresponds to the oxidiser stream. 

As shown in Fig. 2b, the flame location in non-

premixed systems is often assumed as the 

location where st  . Here, st  is the 

stoichiometric mixture fraction, at which 

there is the exact amount of oxidiser to 

convert unit quantity of fuel into product. The 

stoichiometric mixture fraction is written as: 
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The mixture fraction also satisfies Eq. (22). 

Therefore, for the simulations of reactive non-

premixed systems, the equations of energy 

and species can be reduced to one equation 

using mixture fraction as: 
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Once the mixture fraction field is obtained, 

temperature and species mass fraction fields 

can be reconstructed using the relations in Fig. 

2c. These relations are directly obtained from 

Eq. (25) by assuming infinite chemistry, but 

only results are shown here. 
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where bT  is the adiabatic flame temperature, 

0
FY  and 0

OY  are respectively the fuel and 

oxidiser mass fraction at each stream, and 0
FT  

and 0
OT  are temperatures at fuel and oxidiser 

stream, respectively. 

2.3 Equation of state and density 

In premixed reaction mode, Flowsquare 

solves Eqs. (1), (2) and (12), and Eq. (25) is 

solved for airc,  only if pure-air streams are 

set. In non-premixed mode, Eqs. (1), (2) and 

(25) are solved. Temperature is calculated 

from either the progress variable or mixture 

fraction field.  Density field is obtained based 

on the standard thermal equation of state for 

the mixture: 

RTp  .    (27) 

Here, R is the specific gas constant (J/kg K) 

calculated as WR /31.8 , where W  is the 

molar mass of the mixture. For instance, 

058.287R  (J/kg K) for dry air. In Flowsquare, 

all thermodynamic and transport properties 

are assumed as constant for reacting flow 

simulations. 

For non-premixed mode, temperature is just 

mapped onto computational domain based on 

 . Therefore, the change of density (Eq. 27) 

can be much larger than that captured with 

t  initially set. In order to avoid such 

situations and keep simulation stable, 

following relaxation operation can be used for 

density: 

nnn  )1(11   ,  (28) 

where  is the relaxation parameter for 

density, and 1

n .is the density calculated 

using Eq. (27). Clearly, 1  yields right 

solution (but tends to be unstable under low 

resolution conditions). 
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3. Subsonic/supersonic flows 

In high speed flows, the viscous term in the 

momentum transport equation (Eq. 2) may be 

negligible: 
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This equation is a nonlinear hyperbolic 

equation, which is often used for simulations 

of waves. Also, since a fluid velocity is so large, 

incompressible flow assumption is no longer 

valid; energy conservation needs to be taken 

into account. Assuming inviscid fluids (or 

conditions), the energy conservation equation 

is written as: 

  0)( 








i

i

upE
xt

E
,  (30) 

where E  is the total energy per unit volume 

(J/m3). The total energy is related with the 

kinetic energy as: 

iiuueE  5.0 .   (31) 

Here, e  is the internal energy per unit mass 

(J/kg) expressed as )1/(   pe  for ideal 

gas, where )/( vp cc  is the adiabatic index 

(heat capacity ratio; approx. 1.4 for most of 

gases, and this value is used in the software). 

The static pressure is calculated in every time 

step as:  ii

v

uuE
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R
p 5.0 . The set of Eqs. 

(1), (2) and (3) is called Euler equations and 

often written in vector form as: 
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They are solved (also with Eq 31) for fully-

compressible subsonic/ supersonic (inviscid) 

flows. 

4. Numerical methods 

In Flowsquare ver 4, there are a variety of 

choices of numerical methods. Each method 

has pros and cons, and they need to be 

considered for the choice. In this section, 

these methods are summarised. 

4.1. Differentiations 

Spatial differentiations are computed on a 

uniform mesh (cell). The 1st derivative of f  

in i direction at a location j is computed using 

one of following methods ( Ni 1 , N is the 

number of grid points in i direction). 

4.1.1. 2nd order central finite difference 
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4.1.2. 4th order central finite difference 
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4.2. Time integration 

In this section, formulations to obtain a 

solution in the next time step (n+1) from the 

current time step (n) are explained. 

4.2.1. Euler method (1st order) 

The easiest way to integrate the governing 

equations in time is to use Euler method 

which is explicit 1st order scheme: 

t
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f
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This is first order forward method and is 

numerically unstable. 

4.2.2. Lax-Wendroff method (=2nd order 

midpoint method) 

Lax-Wendroff method is a numerical solution 

often used for hyperbolic partial differential 

equation. In this software, the midpoint 

method similar to Lax-Wendroff’s time 

integration part can be used. This method 

compensates the lack of the Euler method by 

integrating in two steps. 

2

t

t

f
ff n

nn






 ,  (42) 

t
t

f
ff n

nn 



1 .  (43) 

4.2.3. 3rd order Runge-Kutta (low-storage) 

In 3rd order Runge-Kutta method, each time 

integration is achieved in following three sub 

steps. 

t

f
tf n

n



 

3

1
,   (44) 

nnn fff  ,    (45) 















t

f
ftf n

nn 
9

5

16

15
,  (46) 

nnn fff   ,    (47) 















t

f
ftf n

nn 
128

153

15

8
,  (48) 

nnn fff  1 .   (49) 

4.3. Poisson’s equation 

Poisson’s equation is solved iteratively to 

obtain pressure variation in Eq. (6). Poisson’s 

equation is written as  

f 2 ,    (50) 

where 2  denotes the Laplace operator. If 

second order central differentiation is applied 

to above equation, the discrete form is: 

ji

jijiji

jijiji

f
y

x

,2

1,,1,

2

,1,,1

2

2




















. (51) 

Therefore, the Poisson’s equation can be 

reduced to n linear equations with unknown 

 . In Flowsquare, the Poisson’s equation is 

iteratively solved using Successive Over-

Relaxation (SOR) method. The (n+1)-th 

iterative solution is calculated from n-th 

iterative solution as: 
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

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
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




 (52) 

where   is the relaxation parameter. Values 

of  >1 are used to accelerate convergence 

speed, while  <1 are used to help 

convergence solutions of an unstable iterative 

process. Typically,  =1.6—1.8 is used for 

both better results and fast convergence. The 

iteration calculation is continued until

p
nn  1 , where p  is tolerance and 

specified by users. 

4.4. Spatial filtering 

Spatial filtering is sometimes required to 

stabilise the calculations. In Flowsquare, the 

second order explicit filter can be used with a 

relaxation parameter as follows: 

4/)2()1(ˆ
11   iijifilifili fffff  .

     (53) 

The relaxation parameter fil  ranges 

from 0 to 1. Minimum possible fil  is 

recommended. 

4.5. Boundary conditions 

Various boundary conditions can be used in 

Flowsquare. Boundary conditions are roughly 

classified into two types: Dirichlet boundary 

condition and Neumann boundary condition. 

Dirichlet BC is also called fixed BC, because it 

specifies the values that a solution takes on 

the boundary of the computational domain. In 

contrast, Neumann BC specifies values that 

the derivative of a solution is to take on the 

boundary of the domain. The value is 

determined to make the derivative zero 

( 21 ff  and 1 NN ff ). In Flowsquare, these 

two types of BC are used appropriately 

depending on the physical quantities. 

4.5.1. Inflow boundary 

On the inflow boundary, P  is set using 

Neumann BC. Other quantities such as  , u , 

v , T , c ,   and E  are specified according to 

Dirichlet BC depending on the simulation 

mode. Some of these values are explicitly set 

by users, while the others are computed 

appropriately during the simulation. Inflow 

boundaries can be set only on the boundaries 

of the computational domain ( 1i , xNi  ,

1j  and yNj  ). 

4.5.2. Outflow boundary 

The minimum pressure P  on the outflow 

boundaries is always set to be a reference 

pressure 0P  (Dirichlet BC) which is explicitly 

set by users. On other outflow boundary 

locations, P  is set according to Neumann BC. 

Other quantities such as  , u , v , T , c  and 

  are specified according to Neumann BC. 

 

4.5.3. Periodic boundary 

One or both of two directions can be set as 

periodic boundaries. On the periodic 

boundaries, derivatives are simply computed 

(shown only for 2nd order scheme in Eq. 34, 

but equally applied to other schemes as well) 

as: 

)2/()( 2

1

iN

i

xff
x

f


















,  (54) 

)2/()( 11 iN

Ni

xff
x

f


















.  (55) 
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4.5.4. Local scalar boundary 

Sometimes, users want to set source of scalar, 

c or , for Eq. (12) or (25) inside the domain. 

Such boundaries can be used as tracer in the 

case of non-reactive flows, or as non-reactive 

area for a convenience in the case of reactive 

case. For this type of boundary, the user-

defined scalar value is set on the boundary. 

Flow velocity and other quantities are 

computed by solving the transport equations 

as usual. 

4.5.5. Wall boundary 

Wall boundaries can be set at any locations in 

the domain. On the wall boundary, the 

velocity is set as zero. All other quantities are 

solved using the transport equations, 

although temperature can be fixed on the wall 

(optional). 

4.5.6. Moving boundary 

Moving boundary is basically moving wall 

boundary. The displacement velocity of the 

wall can be specified by users and the 

movement can be transient (if the moving 

wall has gone, it’s gone) or periodic (when 

moving wall left the domain it comes back 

from the other side of the domain). The 

velocity on the moving wall is fixed to the 

velocity of displacement. All other quantities 

are solved using the transport equations, 

although temperature can be fixed on the wall 

(optional). 

4.5.7. Air-flow boundary 

Only for the simulation of premixed reacting 

flows, pure-air stream can be set on the 

boundary of the numerical domain. The 

velocity and temperature are set (Dirichlet BC) 

explicitly by users. The mixture fraction 

between progress variable and air, c , for Eqs. 

(13) and (25) is set as 0 in the pure-air stream. 

4.6 Initial velocity perturbation 

In Flowsquare, velocity perturbation, ),( pp vu , 

can be added to the initial global velocity field. 

There are three mode of perturbation. 

Mode 1: single mode 
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Mode 2: multi modes 
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Mode 3: multi modes (random amplitudes) 
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where magu  and waven  are user defined 

parameters, and wavenM 2log . The 

perturbation amplitudes, rndu and rndv are  

)(1 nRuu magrnd    ,    )(2 nRuv magrnd  , (62) 

where )(1 nR  and )(2 nR  are random numbers 

ranging from 0 to 1, generated for each n. 

Note these random numbers for pu  and pv  

are different in general. 
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A Bunsen flame simulated using Flowsquare. 


