

Flowsquare 4.0: Theory and Computation

Yuki Minamoto (http://flowsquare.com)

12th December 2013

Flowsquare is a two-dimensional Computational Fluid Dynamics (CFD) software for unsteady, non-

reactive, reactive and subsonic/supersonic flows. The aim of this software is to provide a handy CFD

environment so that more people can get to know what CFD is like and simulate flows for their

educational and/or academic interests. This documentation includes theoretical and numerical

aspects of the software, which are basis of the parameters in grid.txt. Although flow simulations can

be carried out without understanding them, the users are recommended to read this documentation.

1. Non-reactive flows

First, numerical method for non-reactive flow

simulation is explained.

1.1. Governing equations

In Flowsquare, the incompressible governing

equations are solved. They consist of the

continuity equation (mass conservation, and

also Einstein notation is used):

  ,0








i

i

u
xt




 (1)

and the equation for momentum:

   

  ,j
i

ij

j

ji

i

j

g
xx

p

uu
x

u
t


























 (2)

where iu is the velocity component in i-

direction (m/s),  is the mixture density

(kg/m3), p is the pressure (Pa), ig is the

external force in i-direction due to buoyancy

(m/s2). The viscous term ij is written as:

,
3

2






























i

j

j

i
ij

k

k
ij

x

u

x

u

x

u
 (3)

where  is the dynamic viscosity (kg/(m s))

and ij is the Kronecker delta. Note that the

equation is solved assuming a constant

density, although Eqs. (1) and (2) are written

in conservative form. Equation (2) is solved

(integrated in time) in two steps. In the first

step, the equation is solved for  *ju

without the pressure term as:

   

  ,

*

j

i

ij

ji

i

j

g

x
uu

x
u

t






















 (4)

In the second step (time integration), the

pressure term is included so that the mass

conservation is taken into account in the

second time integration:

  .
*

j

j
x

p
u

t 







 (5)

By calculating divergence of Eq. (5), the

Poisson’s equation for the correction pressure
*p is as:

  ,
1

.
*

2

2

tt
u

xx

p
dj

ji


































 (6)

where t is the time step and d , a user

defined parameter, is typically unity. Once the

corrected pressure field in obtained by solving

Eq. (6), the corrected velocity in the next time

step is computed from Eq. (5) as:

http://flowsquare.com/

 Flowsquare 4.0 Users’ Guide (2013)

 2 / 10

  .
*

*
t

x

p
uu

j

jj 



 (7)

The corrected velocity field satisfying the

continuity equation (Eq. 1) is obtained. Note

that in this numerical method, the continuity

equation is not explicitly solved.

2. Reactive flows

In the simulation of reactive flows, Eqs. (1)—

(7) are solved to obtain a velocity field. This

means the flow field is solved based on the

low-Mach number assumption (the flow has

to be “slow” compared to the speed of sound).

Also, changes of species and internal energy

per unit mass need to be considered by

solving the transport equations, due to the

chemical reactions and heat release. The

transport equations for mass fraction species i,

iY and temperature T maybe written under

appropriate assumptions as:

    ,i

j

i
i

j

ij

j

i

x

Y
D

x
Yu

xt

Y




































 (8)

    ,
p

T

jpj

j

j cx

T

cx
Tu

xt

T 





































 (9)

where the energy conservation is written in

terms of temperature. The molecular

diffusivity of species i, thermal conductivity

and specific heat capacity at constant

pressure are respectively denoted by iD , 

and pc . Species and heat production rate per

unit volume are denoted by i and T . For

the simplest reaction system, where the fuel

F and oxidiser O react to produce products

P as:

,POF  (10)

the total number of equations for Eqs. (8) and

(9) is four.

In Flowsquare, in order to reduce the number

of equations to be solved, a progress variable

and a mixture fraction are introduced. The

progress variable is used for reactive flows

with premixed mixtures, while the mixture

fraction is used for reactive systems with non-

premixed mixtures. These two modes of

reactions and the reduced governing equation

are explained in the next subsections.

2.1 Premixed reacting flows

A chemical reaction is called premixed

reaction when a fuel and oxidiser are fully

mixed before the reaction take place. For

example, premixed reaction (combustion) can

be observed in traditional gas stove and

heater burners.

One of the important features of this reaction

mode is that a reaction front (a flame in

combustion) can freely propagate toward

unburnt mixture (see Fig. 1a), or mixture can

ignite at any locations if there is enough

activation energy. This is not the case in non-

premixed systems as explained in the next

subsection.

For premixed mixture, reaction can be

expressed by using reaction progress variables.

A progress variable, often denoted by c , is a

normalised scalar which shows the extent of

reaction progress in premixed reactive

systems. Although there are several

definitions for progress variables, following

definitions are frequently used:

uOF

OF
Y

Y

Y
c

OF

,/

/1
/

 ,
bP

P
Y

Y

Y
c

P

,

 , and

 
 ub

u
T

TT

TT
c




 , (11)

where the subscripts, u and b denote

unburnt and burnt mixtures, and F , O and

 Flowsquare 4.0 Users’ Guide (2013)

 3 / 10

P denote fuel, oxidiser and product,

respectively. As clearly seen from Eq. (11), a

progress variable is 0 in the unburnt mixture

and 1 in the fully burnt mixture. Figure 1b

shows a typical progress variable variation for

one-dimensional premixed flame. Flame front

(reaction front) is often defined using a iso-

contour of 6.0~3.0c .

Lewis number Le is defined as the ratio of

thermal diffusivity to mass diffusivity. If unity

Lewis number, constant pressure, adiabatic

conditions and TYY cccc
POF


/
 are

assumed, Eqs (8) and (9) are reduced to one

transport equation of progress variable as:

    ,c

jj

j

j x

c
D

x
cu

xt

c




































 (12)

where c is the reaction rate of c , and D is

the diffusivity of the progress variable (under

the above assumptions, it can be either

thermal diffusivity or mass diffusivity of

species). Therefore, once a progress variable

field is given, temperature and species mass

fraction field can be obtained using Eq. (11).

The reaction rate c is modelled in the

software as follows:

c
na

c cT
T

T
k )1(exp 








 , (13)

where k , aT and n are mixture specific and

constant for the single step reaction explained

in Eq. (10). In Eq. (13), c is the mixture

fraction between a fuel-oxidiser mixture and

air (inert gas). Although the mixture fraction is

explained in the next subsection, this may be

used to represent surrounding air in premixed

combustion. In 1c regions, the local

mixture consists of only the fuel-oxidiser

mixture, while only the air exists in 0c . By

multiplying c to the reaction rate as in Eq.

(13), partially premixed reaction such as

Figure 1: Schematic illustrations of (a) a premixed

flame and (b) one-dimensional variation of

progress variable.

Figure 2: Schematic illustrations of (a) a non-

premixed flame, (b) one-dimensional variations of

mixture fraction, and (c) temperature and mass

fraction variations in a mixture fraction space.

premixed combustion in surrounding air

(pure-air stream) can be considered. When no

pure-air stream is set in the computational

domain, c is automatically set as unity. The

scalar transport equation, Eq. (12) may be

solved for non-reactive cases without source

 Flowsquare 4.0 Users’ Guide (2013)

 4 / 10

term c when local scalar boundary

condition is used (see Sec. 4.5.4).

2.2 Non-premixed reacting flows

In contrast to premixed reacting flows, non-

premixed reactive systems do not require

premixing of fuel and oxidiser before

reactions. A schematic illustration of a typical

non-premixed flame is shown in Fig. 2a. There

are fuel and oxidiser streams and reaction

takes place only at the location where the fuel

and oxidiser meet.

Using the given chemical reaction model in Eq.

(10), the mass production rate of fuel, oxidiser,

product and heat release are related as:

Qss

TPO
F


 




1
, (14)

where Q is the heating value of fuel and s is

the mass of oxidiser required per unit mass of

fuel, defined as FO WWs / . Here, iW is the

molar mass of species i. Under the unity Lewis

number assumption, the conserved scalar 

is defined from any pair of variables as:

OFOF YsY , , (15)

s

Y
Y P

FPF



1

, , (16)

s

Y
Y P

OPO



1

, , (17)

Q

Tc
Y

p

FTF , , (18)

Q

Tsc
Y

p

OOF , . (19)

 is called conserved scalar because no

source term appears in the transport

equations of these conserved scalars (such

transport equation can be obtained from Eqs.

8 and 9); for above OF , , the transport

equations of FsY and OY are written as:

   

,F

j

F

j

Fj

j

F

s
x

sY
D

x

sYu
xt

sY







































 (20)

   

.O

j

O

j

Oj

j

O

x

Y
D

x

Yu
xt

Y







































 (21)

By combining Eqs. (20) and (21) using the

relation in Eq. (14), it is clear that the source

terms are cancelled out and following is

obtained:

 
 

































j

OF

j

OFj

j

OF

x
D

x
u

xt

,

,

, 




 (22)

Once a conserved scalar is defined, a

normalised conserved scalar  is obtained.

This normalised conserved scalar is generally

called mixture fraction, and written as:

OXFU

OX









 , (23)

where the subscripts FU and OX denote

fuel and oxidiser streams, respectively. Figure

2b shows a one-dimensional mixture fraction

variation for a non-premixed flame shown in

Fig. 2a. With the above definition of mixture

fraction, 1 corresponds to the fuel stream

and 0 corresponds to the oxidiser stream.

As shown in Fig. 2b, the flame location in non-

premixed systems is often assumed as the

location where st  . Here, st is the

stoichiometric mixture fraction, at which

there is the exact amount of oxidiser to

convert unit quantity of fuel into product. The

stoichiometric mixture fraction is written as:

 Flowsquare 4.0 Users’ Guide (2013)

 5 / 10

OXFU

OX
st









 . (24)

The mixture fraction also satisfies Eq. (22).

Therefore, for the simulations of reactive non-

premixed systems, the equations of energy

and species can be reduced to one equation

using mixture fraction as:

   
































jj

j

j x
D

x
u

xt





. (25)

Once the mixture fraction field is obtained,

temperature and species mass fraction fields

can be reconstructed using the relations in Fig.

2c. These relations are directly obtained from

Eq. (25) by assuming infinite chemistry, but

only results are shown here.

For st 

 0FY ,

 














st

OO YY



10 ,

 0)1(FP YsY  ,

 00)(O

st

Ob TTTT 



.

For st  (26)

st

st
FF YY










1

0 ,

 0OY ,

st

FP YsY










1

1
)1(0

11

00











st

bstF

st

Fb TTTT
T







,

where bT is the adiabatic flame temperature,

0
FY and 0

OY are respectively the fuel and

oxidiser mass fraction at each stream, and 0
FT

and 0
OT are temperatures at fuel and oxidiser

stream, respectively.

2.3 Equation of state and density

In premixed reaction mode, Flowsquare

solves Eqs. (1), (2) and (12), and Eq. (25) is

solved for airc, only if pure-air streams are

set. In non-premixed mode, Eqs. (1), (2) and

(25) are solved. Temperature is calculated

from either the progress variable or mixture

fraction field. Density field is obtained based

on the standard thermal equation of state for

the mixture:

RTp  . (27)

Here, R is the specific gas constant (J/kg K)

calculated as WR /31.8 , where W is the

molar mass of the mixture. For instance,

058.287R (J/kg K) for dry air. In Flowsquare,

all thermodynamic and transport properties

are assumed as constant for reacting flow

simulations.

For non-premixed mode, temperature is just

mapped onto computational domain based on

 . Therefore, the change of density (Eq. 27)

can be much larger than that captured with

t initially set. In order to avoid such

situations and keep simulation stable,

following relaxation operation can be used for

density:

nnn )1(11   , (28)

where  is the relaxation parameter for

density, and 1

n .is the density calculated

using Eq. (27). Clearly, 1 yields right

solution (but tends to be unstable under low

resolution conditions).

 Flowsquare 4.0 Users’ Guide (2013)

 6 / 10

3. Subsonic/supersonic flows

In high speed flows, the viscous term in the

momentum transport equation (Eq. 2) may be

negligible:

   
j

ji

i

j
x

p
uu

x
u

t 












 . (29)

This equation is a nonlinear hyperbolic

equation, which is often used for simulations

of waves. Also, since a fluid velocity is so large,

incompressible flow assumption is no longer

valid; energy conservation needs to be taken

into account. Assuming inviscid fluids (or

conditions), the energy conservation equation

is written as:

  0)(








i

i

upE
xt

E
, (30)

where E is the total energy per unit volume

(J/m3). The total energy is related with the

kinetic energy as:

iiuueE  5.0 . (31)

Here, e is the internal energy per unit mass

(J/kg) expressed as)1/(  pe for ideal

gas, where)/(vp cc is the adiabatic index

(heat capacity ratio; approx. 1.4 for most of

gases, and this value is used in the software).

The static pressure is calculated in every time

step as:  ii

v

uuE
c

R
p 5.0 . The set of Eqs.

(1), (2) and (3) is called Euler equations and

often written in vector form as:

0














y

G

x

F

t

q
, (32)

where









































































vpE

pv

uv

v

G

upE

uv

pu

u

F

E

v

u
q

)(

,

)(

,
2

2



















.

 (33)

They are solved (also with Eq 31) for fully-

compressible subsonic/ supersonic (inviscid)

flows.

4. Numerical methods

In Flowsquare ver 4, there are a variety of

choices of numerical methods. Each method

has pros and cons, and they need to be

considered for the choice. In this section,

these methods are summarised.

4.1. Differentiations

Spatial differentiations are computed on a

uniform mesh (cell). The 1st derivative of f

in i direction at a location j is computed using

one of following methods (Ni 1 , N is the

number of grid points in i direction).

4.1.1. 2nd order central finite difference

)2/()(11 ijj

ji

xff
x

f
 

















, (34)

i

i

xff
x

f
/)(21

1


















, (35)

iNN

Ni

xff
x

f
/)(1

















. (36)

4.1.2. 4th order central finite difference

)12/()88(2112 iijjj

ji

xffff
x

f
 


















 (36)

ii x

fffff

x

f

12

316364825 54321

1





















 (37)

 Flowsquare 4.0 Users’ Guide (2013)

 7 / 10

ii x

fffff

x

f

12

618103 54321

2




















 (38)

i

NNNNN

Ni x

fffff

x

f

12

618103 4321

1

























 (39)

i

NNNNN

Ni

x

fffff

x

f

12

316364825 4321  



















 (40)

4.2. Time integration

In this section, formulations to obtain a

solution in the next time step (n+1) from the

current time step (n) are explained.

4.2.1. Euler method (1st order)

The easiest way to integrate the governing

equations in time is to use Euler method

which is explicit 1st order scheme:

t
t

f
ff n

nn 



1 . (41)

This is first order forward method and is

numerically unstable.

4.2.2. Lax-Wendroff method (=2nd order

midpoint method)

Lax-Wendroff method is a numerical solution

often used for hyperbolic partial differential

equation. In this software, the midpoint

method similar to Lax-Wendroff’s time

integration part can be used. This method

compensates the lack of the Euler method by

integrating in two steps.

2

t

t

f
ff n

nn






 , (42)

t
t

f
ff n

nn 



1 . (43)

4.2.3. 3rd order Runge-Kutta (low-storage)

In 3rd order Runge-Kutta method, each time

integration is achieved in following three sub

steps.

t

f
tf n

n



 

3

1
, (44)

nnn fff  , (45)















t

f
ftf n

nn 
9

5

16

15
, (46)

nnn fff   , (47)















t

f
ftf n

nn 
128

153

15

8
, (48)

nnn fff  1 . (49)

4.3. Poisson’s equation

Poisson’s equation is solved iteratively to

obtain pressure variation in Eq. (6). Poisson’s

equation is written as

f 2 , (50)

where 2 denotes the Laplace operator. If

second order central differentiation is applied

to above equation, the discrete form is:

ji

jijiji

jijiji

f
y

x

,2

1,,1,

2

,1,,1

2

2




















. (51)

Therefore, the Poisson’s equation can be

reduced to n linear equations with unknown

 . In Flowsquare, the Poisson’s equation is

iteratively solved using Successive Over-

Relaxation (SOR) method. The (n+1)-th

iterative solution is calculated from n-th

iterative solution as:

 Flowsquare 4.0 Users’ Guide (2013)

 8 / 10

,
)(2

)1(

22

22

2

1
1,1,

2

1
,1,1

,
1

,

yx

yx

f
yx

ij

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji
















































 (52)

where  is the relaxation parameter. Values

of  >1 are used to accelerate convergence

speed, while  <1 are used to help

convergence solutions of an unstable iterative

process. Typically,  =1.6—1.8 is used for

both better results and fast convergence. The

iteration calculation is continued until

p
nn  1 , where p is tolerance and

specified by users.

4.4. Spatial filtering

Spatial filtering is sometimes required to

stabilise the calculations. In Flowsquare, the

second order explicit filter can be used with a

relaxation parameter as follows:

4/)2()1(ˆ
11   iijifilifili fffff  .

 (53)

The relaxation parameter fil ranges

from 0 to 1. Minimum possible fil is

recommended.

4.5. Boundary conditions

Various boundary conditions can be used in

Flowsquare. Boundary conditions are roughly

classified into two types: Dirichlet boundary

condition and Neumann boundary condition.

Dirichlet BC is also called fixed BC, because it

specifies the values that a solution takes on

the boundary of the computational domain. In

contrast, Neumann BC specifies values that

the derivative of a solution is to take on the

boundary of the domain. The value is

determined to make the derivative zero

(21 ff  and 1 NN ff). In Flowsquare, these

two types of BC are used appropriately

depending on the physical quantities.

4.5.1. Inflow boundary

On the inflow boundary, P is set using

Neumann BC. Other quantities such as  , u ,

v , T , c ,  and E are specified according to

Dirichlet BC depending on the simulation

mode. Some of these values are explicitly set

by users, while the others are computed

appropriately during the simulation. Inflow

boundaries can be set only on the boundaries

of the computational domain (1i , xNi  ,

1j and yNj ).

4.5.2. Outflow boundary

The minimum pressure P on the outflow

boundaries is always set to be a reference

pressure 0P (Dirichlet BC) which is explicitly

set by users. On other outflow boundary

locations, P is set according to Neumann BC.

Other quantities such as  , u , v , T , c and

 are specified according to Neumann BC.

4.5.3. Periodic boundary

One or both of two directions can be set as

periodic boundaries. On the periodic

boundaries, derivatives are simply computed

(shown only for 2nd order scheme in Eq. 34,

but equally applied to other schemes as well)

as:

)2/()(2

1

iN

i

xff
x

f


















, (54)

)2/()(11 iN

Ni

xff
x

f


















. (55)

 Flowsquare 4.0 Users’ Guide (2013)

 9 / 10

4.5.4. Local scalar boundary

Sometimes, users want to set source of scalar,

c or , for Eq. (12) or (25) inside the domain.

Such boundaries can be used as tracer in the

case of non-reactive flows, or as non-reactive

area for a convenience in the case of reactive

case. For this type of boundary, the user-

defined scalar value is set on the boundary.

Flow velocity and other quantities are

computed by solving the transport equations

as usual.

4.5.5. Wall boundary

Wall boundaries can be set at any locations in

the domain. On the wall boundary, the

velocity is set as zero. All other quantities are

solved using the transport equations,

although temperature can be fixed on the wall

(optional).

4.5.6. Moving boundary

Moving boundary is basically moving wall

boundary. The displacement velocity of the

wall can be specified by users and the

movement can be transient (if the moving

wall has gone, it’s gone) or periodic (when

moving wall left the domain it comes back

from the other side of the domain). The

velocity on the moving wall is fixed to the

velocity of displacement. All other quantities

are solved using the transport equations,

although temperature can be fixed on the wall

(optional).

4.5.7. Air-flow boundary

Only for the simulation of premixed reacting

flows, pure-air stream can be set on the

boundary of the numerical domain. The

velocity and temperature are set (Dirichlet BC)

explicitly by users. The mixture fraction

between progress variable and air, c , for Eqs.

(13) and (25) is set as 0 in the pure-air stream.

4.6 Initial velocity perturbation

In Flowsquare, velocity perturbation,),(pp vu ,

can be added to the initial global velocity field.

There are three mode of perturbation.

Mode 1: single mode













































































wave

x

wave

x

mag

wave

x

wave

x

magp

n
N

j

n
N

i
u

n
N

j

n
N

i
uu

1

1
2sin

1

1
2cos

1

1
2cos

1

1
2sin









, (56)













































































wave

x

wave

x

mag

wave

x

wave

x

magp

n
N

j

n
N

i
u

n
N

j

n
N

i
uv

1

1
2cos

1

1
2sin

1

1
2sin

1

1
2cos









, (57)

Mode 2: multi modes



























































































































M

n

n

wave

x

n

wave

x

mag

n

wave

x

n

wave

x

mag

p

n

N

j

n

N

i
u

n

N

j

n

N

i
u

u
0

1

1

1

1

21

1
sin

21

1
cos

21

1
cos

21

1
sin









,(58)

 Flowsquare 4.0 Users’ Guide (2013)

 10 / 10



























































































































M

n

n

wave

x

n

wave

x

mag

n

wave

x

n

wave

x

mag

p

n

N

j

n

N

i
u

n

N

j

n

N

i
u

v
0

1

1

1

1

21

1
cos

21

1
sin

21

1
sin

21

1
cos









,(59)

Mode 3: multi modes (random amplitudes)



























































































































M

n

n

wave

x

n

wave

x

rnd

n

wave

x

n

wave

x

rnd

p

n

N

j

n

N

i
u

n

N

j

n

N

i
u

u
0

1

1

1

1

21

1
sin

21

1
cos

21

1
cos

21

1
sin









,(60)



























































































































M

n

n

wave

x

n

wave

x

rnd

n

wave

x

n

wave

x

rnd

p

n

N

j

n

N

i
v

n

N

j

n

N

i
v

u
0

1

1

1

1

21

1
cos

21

1
sin

21

1
sin

21

1
cos









,(61)

where magu and waven are user defined

parameters, and wavenM 2log . The

perturbation amplitudes, rndu and rndv are

)(1 nRuu magrnd  ,)(2 nRuv magrnd  , (62)

where)(1 nR and)(2 nR are random numbers

ranging from 0 to 1, generated for each n.

Note these random numbers for pu and pv

are different in general.

5. Literatures to consult with would be:

Poinsot, T. and Veynante, D. (2005)

Theoretical and numerical combustion. R.T.

Edwards, Inc.

Cant, R. S. and Mastorakos, E. (2008) An

introduction to turbulent reacting flow.

Imperial College Press.

Sana, O. and Kara, K. (2013) Numerical

assessments of high-order accurate shock

capturing schemes: Kelvin-Helmholtz type

vertical structures in high-resolutions.

Computers and Fluids.

A Bunsen flame simulated using Flowsquare.

